- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Corminboeuf, Clemence (2)
-
Bienvenue, Sébastien P. (1)
-
Ceriotti, Michele (1)
-
Cheng, Bingqing (1)
-
Cuzzocrea, Alice (1)
-
Fang, Wei (1)
-
Helfrecht, Benjamin A. (1)
-
Juda, Przemysław (1)
-
Kapil, Venkat (1)
-
Kessler, Jan (1)
-
Kühne, Thomas D. (1)
-
Litman, Yair (1)
-
Luu, Du (1)
-
Manolopoulos, David E. (1)
-
Markland, Thomas E. (1)
-
Marsalek, Ondrej (1)
-
Meißner, Robert H. (1)
-
Patkowski, Konrad (1)
-
Petraglia, Riccardo (1)
-
Poltavsky, Igor (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Symmetry-adapted perturbation theory (SAPT) is a popular and versatile tool to compute and decompose noncovalent interaction energies between molecules. The intramolecular SAPT (ISAPT) variant provides a similar energy decomposition between two nonbonded fragments of the same molecule, covalently connected by a third fragment. In this work, we explore an alternative approach where the noncovalent interaction is singled out by a range separation of the Coulomb potential. We investigate two common splittings of the 1/r potential into long-range and short-range parts based on the Gaussian and error functions, and approximate either the entire intermolecular/interfragment interaction or only its attractive terms by the long-range contribution. These range separation schemes are tested for a number of intermolecular and intramolecular complexes. We find that the energy corrections from range-separated SAPT or ISAPT are in reasonable agreement with complete SAPT/ISAPT data. This result should be contrasted with the inability of the long-range multipole expansion to describe crucial short-range charge penetration and exchange effects; it shows that the long-range interaction potential does not just recover the asymptotic interaction energy but also provides a useful account of short-range terms. The best consistency is attained for the error-function separation applied to all interaction terms, both attractive and repulsive. This study is the first step toward a fragmentation-free decomposition of intramolecular nonbonded energy.more » « less
-
Kapil, Venkat; Rossi, Mariana; Marsalek, Ondrej; Petraglia, Riccardo; Litman, Yair; Spura, Thomas; Cheng, Bingqing; Cuzzocrea, Alice; Meißner, Robert H.; Wilkins, David M.; et al (, Computer Physics Communications)
An official website of the United States government
